Ana Sayfa
Matematikçiler
Makaleler
Matematik Seçkileri
Fraktallar
Paradokslar
Sayılar Teorisi
=> Algebraic Curves-Mordell Curve
=> Algebraic Curves-Ochoa Curve
=> Algebraic Integer
=> Algebraic Number
=> Algebraic Number Theory
=> Chebotarev Density Theorem
=> Class Field
=> Cyclotomic Field
=> Dedekind Ring
=> Fractional Ideal
=> Global Field
=> Local Field
=> Number Field Signature
=> Picard Group
=> Pisot Number
=> Weyl Sum
=> Casting Out Nines
=> A-Sequence
=> Anomalous Cancellation
=> Archimedes' Axiom
=> B2-Sequence
=> Calcus
=> Calkin-Wilf Tree
=> Egyptian Fraction
=> Egyptian Number
=> Erdős-Straus Conjecture
=> Erdős-Turán Conjecture
=> Eye of Horus Fraction
=> Farey Sequence
=> Ford Circle
=> Irreducible Fraction
=> Mediant
=> Minkowski's Question Mark Function
=> Pandigital Fraction
=> Reverse Polish Notation
=> Division by Zero
=> Infinite Product
=> Karatsuba Multiplication
=> Lattice Method
=> Pippenger Product
=> Reciprocal
=> Russian Multiplication
=> Solidus
=> Steffi Problem
=> Synthetic Division
=> Binary
=> Euler's Totient Rule
=> Goodstein Sequence
=> Hereditary Representation
=> Least Significant Bit
=> Midy's Theorem
=> Moser-de Bruijn Sequence
=> Negabinary
=> Negadecimal
=> Nialpdrome
=> Nonregular Number
=> Normal Number
=> One-Seventh Ellipse
=> Quaternary
=> Radix
=> Regular Number
=> Repeating Decimal
=> Saunders Graphic
=> Ternary
=> Unique Prime
=> Vigesimal
Ziyaretçi defteri
 

Pandigital Fraction

A fraction containing each of the digits 1 through 9 is called a pandigital fraction. The following table gives the number of pandigital fractions which represent simple unit fractions. The numbers of pandigital fractions for 1/1, 1/2, 1/3, ... are 0, 12, 2, 4, 12, 3, 7, 46, 3, ... (Sloane's A054383).

f # fractions
1/2 12 (6729)/(13458),(6792)/(13584),(6927)/(13854),(7269)/(14538),(7293)/(14586),(7329)/(14658),
    (7692)/(15384),(7923)/(15846),(7932)/(15864),(9267)/(18534),(9273)/(18546),(9327)/(18654)
1/3 2 (5823)/(17469),(5832)/(17496)
1/4 4 (3942)/(15768),(4392)/(17568),(5796)/(23184),(7956)/(31824)
1/5 12 (2697)/(13485),(2769)/(13845),(2937)/(14685),(2967)/(14835),(2973)/(14865),(3297)/(16485),
    (3729)/(18645),(6297)/(31485),(7629)/(38145),(9237)/(46185),(9627)/(48135),(9723)/(48615)
1/6 3 (2943)/(17658),(4653)/(27918),(5697)/(34182)
1/7 7 (2394)/(16758),(2637)/(18459),(4527)/(31689),(5274)/(36918),(5418)/(37926),(5976)/(41832),
    (7614)/(53298)
1/8 46 (3187)/(25496),(4589)/(36712),(4591)/(36728),(4689)/(37512),(4691)/(37528),(4769)/(38152),
    (5237)/(41896),(5371)/(42968),(5789)/(46312),(5791)/(46328),(5839)/(46712),(5892)/(47136),
    (5916)/(47328),(5921)/(47368),(6479)/(51832),(6741)/(53928),(6789)/(54312),(6791)/(54328),
    (6839)/(54712),(7123)/(56984),(7312)/(58496),(7364)/(58912),(7416)/(59328),(7421)/(59368),
    (7894)/(63152),(7941)/(63528),(8174)/(65392),(8179)/(65432),(8394)/(67152),(8419)/(67352),
    (8439)/(67512),(8932)/(71456),(8942)/(71536),(8953)/(71624),(8954)/(71632),(9156)/(73248),
    (9158)/(73264),(9182)/(73456),(9316)/(74528),(9321)/(74568),(9352)/(74816),(9416)/(75328),
    (9421)/(75368),(9523)/(76184),(9531)/(76248),(9541)/(76328)
1/9 3 (6381)/(57429),(6471)/(58239),(8361)/(75249)
1/(10) 0  
1/(11) 0  
1/(12) 4 (3816)/(45792),(6129)/(73548),(7461)/(89532),(7632)/(91584)
 

Bugün 173 ziyaretçi (204 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol