Ana Sayfa
Matematikçiler
Makaleler
Matematik Seçkileri
Fraktallar
Paradokslar
Sayılar Teorisi
=> Algebraic Curves-Mordell Curve
=> Algebraic Curves-Ochoa Curve
=> Algebraic Integer
=> Algebraic Number
=> Algebraic Number Theory
=> Chebotarev Density Theorem
=> Class Field
=> Cyclotomic Field
=> Dedekind Ring
=> Fractional Ideal
=> Global Field
=> Local Field
=> Number Field Signature
=> Picard Group
=> Pisot Number
=> Weyl Sum
=> Casting Out Nines
=> A-Sequence
=> Anomalous Cancellation
=> Archimedes' Axiom
=> B2-Sequence
=> Calcus
=> Calkin-Wilf Tree
=> Egyptian Fraction
=> Egyptian Number
=> Erdős-Straus Conjecture
=> Erdős-Turán Conjecture
=> Eye of Horus Fraction
=> Farey Sequence
=> Ford Circle
=> Irreducible Fraction
=> Mediant
=> Minkowski's Question Mark Function
=> Pandigital Fraction
=> Reverse Polish Notation
=> Division by Zero
=> Infinite Product
=> Karatsuba Multiplication
=> Lattice Method
=> Pippenger Product
=> Reciprocal
=> Russian Multiplication
=> Solidus
=> Steffi Problem
=> Synthetic Division
=> Binary
=> Euler's Totient Rule
=> Goodstein Sequence
=> Hereditary Representation
=> Least Significant Bit
=> Midy's Theorem
=> Moser-de Bruijn Sequence
=> Negabinary
=> Negadecimal
=> Nialpdrome
=> Nonregular Number
=> Normal Number
=> One-Seventh Ellipse
=> Quaternary
=> Radix
=> Regular Number
=> Repeating Decimal
=> Saunders Graphic
=> Ternary
=> Unique Prime
=> Vigesimal
Ziyaretçi defteri
 

Class Field

Given a set P of primes, a field K is called a class field if it is a maximal normal extension of the rationals which splits all of the primes in P, and if P is the maximal set of primes split by K. Here the set P is defined up to the equivalence relation of allowing a finite number of exceptions.

The basic example is the set of primes congruent to 1 (mod 4),

 P={p:p=1 (mod 4)}.

The class field for P is Q(i) because every such prime is expressible as the sum of two squares p=x^2+y^2=(x+iy)(x-iy).

 

Bugün 183 ziyaretçi (217 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol