Ana Sayfa
Matematikçiler
Makaleler
Matematik Seçkileri
Fraktallar
Paradokslar
Sayılar Teorisi
=> Algebraic Curves-Mordell Curve
=> Algebraic Curves-Ochoa Curve
=> Algebraic Integer
=> Algebraic Number
=> Algebraic Number Theory
=> Chebotarev Density Theorem
=> Class Field
=> Cyclotomic Field
=> Dedekind Ring
=> Fractional Ideal
=> Global Field
=> Local Field
=> Number Field Signature
=> Picard Group
=> Pisot Number
=> Weyl Sum
=> Casting Out Nines
=> A-Sequence
=> Anomalous Cancellation
=> Archimedes' Axiom
=> B2-Sequence
=> Calcus
=> Calkin-Wilf Tree
=> Egyptian Fraction
=> Egyptian Number
=> Erdős-Straus Conjecture
=> Erdős-Turán Conjecture
=> Eye of Horus Fraction
=> Farey Sequence
=> Ford Circle
=> Irreducible Fraction
=> Mediant
=> Minkowski's Question Mark Function
=> Pandigital Fraction
=> Reverse Polish Notation
=> Division by Zero
=> Infinite Product
=> Karatsuba Multiplication
=> Lattice Method
=> Pippenger Product
=> Reciprocal
=> Russian Multiplication
=> Solidus
=> Steffi Problem
=> Synthetic Division
=> Binary
=> Euler's Totient Rule
=> Goodstein Sequence
=> Hereditary Representation
=> Least Significant Bit
=> Midy's Theorem
=> Moser-de Bruijn Sequence
=> Negabinary
=> Negadecimal
=> Nialpdrome
=> Nonregular Number
=> Normal Number
=> One-Seventh Ellipse
=> Quaternary
=> Radix
=> Regular Number
=> Repeating Decimal
=> Saunders Graphic
=> Ternary
=> Unique Prime
=> Vigesimal
Ziyaretçi defteri
 

Ford Circle

FordCircles

Pick any two coprime integers h and k, then the circle C(h,k) of radius 1/(2k^2) centered at (h/k,+/-1/(2k^2)) is known as a Ford circle. No matter what and how many hs and ks are picked, none of the Ford circles intersect (and all are tangent to the x-axis). This can be seen by examining the squared distance between the centers of the circles with (h,k) and (h^',k^'),

 d^2=((h^')/(k^')-h/k)^2+(1/(2k^('2))-1/(2k^2))^2.
(1)

Let s be the sum of the radii

 s=r_1+r_2=1/(2k^2)+1/(2k^('2)),
(2)

then

 d^2-s^2=((h^'k-hk^')^2-1)/(k^2k^('2)).
(3)

But (h^'k-k^'h)^2>=1, so d^2-s^2>=0 and the distance between circle centers is >= the sum of the circle radii, with equality (and therefore tangency) iff |h^'k-k^'h|=1. Ford circles are related to the Farey sequence (Conway and Guy 1996).

FordCirclesIntersection

If h_1/k_1, h_2/k_2, and h_3/k_3 are three consecutive terms in a Farey sequence, then the circles C(h_1,k_1) and C(h_2,k_2) are tangent at

 alpha_1=((h_2)/(k_2)-(k_1)/(k_2(k_2^2+k_1^2)),1/(k_2^2+k_1^2))
(4)

and the circles C(h_2,k_2) and C(h_3,k_3) intersect in

 alpha_2=((h_2)/(k_2)+(k_3)/(k_2(k_2^2+k_3^2)),1/(k_2^2+k_3^2)).
(5)

Moreover, alpha_1 lies on the circumference of the semicircle with diameter (h_1/k_1,0)-(h_2/k_2,0) and alpha_2 lies on the circumference of the semicircle with diameter (h_2/k_2,0)-(h_3/k_3,0) (Apostol 1997, p. 101).

 

Bugün 169 ziyaretçi (198 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol