Ana Sayfa
Matematikçiler
Makaleler
Matematik Seçkileri
Fraktallar
Paradokslar
Sayılar Teorisi
=> Algebraic Curves-Mordell Curve
=> Algebraic Curves-Ochoa Curve
=> Algebraic Integer
=> Algebraic Number
=> Algebraic Number Theory
=> Chebotarev Density Theorem
=> Class Field
=> Cyclotomic Field
=> Dedekind Ring
=> Fractional Ideal
=> Global Field
=> Local Field
=> Number Field Signature
=> Picard Group
=> Pisot Number
=> Weyl Sum
=> Casting Out Nines
=> A-Sequence
=> Anomalous Cancellation
=> Archimedes' Axiom
=> B2-Sequence
=> Calcus
=> Calkin-Wilf Tree
=> Egyptian Fraction
=> Egyptian Number
=> Erdős-Straus Conjecture
=> Erdős-Turán Conjecture
=> Eye of Horus Fraction
=> Farey Sequence
=> Ford Circle
=> Irreducible Fraction
=> Mediant
=> Minkowski's Question Mark Function
=> Pandigital Fraction
=> Reverse Polish Notation
=> Division by Zero
=> Infinite Product
=> Karatsuba Multiplication
=> Lattice Method
=> Pippenger Product
=> Reciprocal
=> Russian Multiplication
=> Solidus
=> Steffi Problem
=> Synthetic Division
=> Binary
=> Euler's Totient Rule
=> Goodstein Sequence
=> Hereditary Representation
=> Least Significant Bit
=> Midy's Theorem
=> Moser-de Bruijn Sequence
=> Negabinary
=> Negadecimal
=> Nialpdrome
=> Nonregular Number
=> Normal Number
=> One-Seventh Ellipse
=> Quaternary
=> Radix
=> Regular Number
=> Repeating Decimal
=> Saunders Graphic
=> Ternary
=> Unique Prime
=> Vigesimal
Ziyaretçi defteri
 

Minkowski's Question Mark Function

MinkowskiQuestionMark

The function y=?(x) defined by Minkowski for the purpose of mapping the quadratic irrational numbers in the open interval (0,1) into the rational numbers of (0,1) in a continuous, order-preserving manner. ?(x) takes a number having continued fraction x=[0;a_1,a_2,a_3,...] to the number

 ?(x)=sum_(k)((-1)^(k-1))/(2^((a_1+...+a_k)-1)).
(1)

The function satisfies the following properties (Salem 1943).

1. ?(x) is strictly increasing.

2. If x is rational, then ?(x) is of the form k/2^s, with k and s integers.

3. If x is a quadratic irrational number, then the continued fraction is periodic, and hence ?(x) is rational.

4. The function is purely singular (Denjoy 1938).

?(x) can also be constructed as

 ?((p+p^')/(q+q^'))=(?(p/q)+?(p^'/q^'))/2,
(2)

where p/q and p^'/q^' are two consecutive irreducible fractions from the Farey sequence. At the nth stage of this definition, ?(x) is defined for 2^n+1 values of x, and the ordinates corresponding to these values are x=k/2^n for k=0, 1, ..., 2^n (Salem 1943).

The function satisfies the identity

 ?(1/(k^n))=1/(2^(k^n-1)).
(3)

A few special values include

?(0) = 0
(4)
?(1/3) = 1/4
(5)
?(1/2) = 1/2
(6)
?(phi-1) = 2/3
(7)
?(2/3) = 3/4
(8)
?(1/2sqrt(2)) = 4/5
(9)
?(1/2sqrt(3)) = (84)/(85)
(10)
?(1) = 1,
(11)

where phi is the golden ratio.

 

Bugün 141 ziyaretçi (162 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol