Ana Sayfa
Matematikçiler
Makaleler
Matematik Seçkileri
Fraktallar
Paradokslar
Sayılar Teorisi
=> Algebraic Curves-Mordell Curve
=> Algebraic Curves-Ochoa Curve
=> Algebraic Integer
=> Algebraic Number
=> Algebraic Number Theory
=> Chebotarev Density Theorem
=> Class Field
=> Cyclotomic Field
=> Dedekind Ring
=> Fractional Ideal
=> Global Field
=> Local Field
=> Number Field Signature
=> Picard Group
=> Pisot Number
=> Weyl Sum
=> Casting Out Nines
=> A-Sequence
=> Anomalous Cancellation
=> Archimedes' Axiom
=> B2-Sequence
=> Calcus
=> Calkin-Wilf Tree
=> Egyptian Fraction
=> Egyptian Number
=> Erdős-Straus Conjecture
=> Erdős-Turán Conjecture
=> Eye of Horus Fraction
=> Farey Sequence
=> Ford Circle
=> Irreducible Fraction
=> Mediant
=> Minkowski's Question Mark Function
=> Pandigital Fraction
=> Reverse Polish Notation
=> Division by Zero
=> Infinite Product
=> Karatsuba Multiplication
=> Lattice Method
=> Pippenger Product
=> Reciprocal
=> Russian Multiplication
=> Solidus
=> Steffi Problem
=> Synthetic Division
=> Binary
=> Euler's Totient Rule
=> Goodstein Sequence
=> Hereditary Representation
=> Least Significant Bit
=> Midy's Theorem
=> Moser-de Bruijn Sequence
=> Negabinary
=> Negadecimal
=> Nialpdrome
=> Nonregular Number
=> Normal Number
=> One-Seventh Ellipse
=> Quaternary
=> Radix
=> Regular Number
=> Repeating Decimal
=> Saunders Graphic
=> Ternary
=> Unique Prime
=> Vigesimal
Ziyaretçi defteri
 

Goodstein Sequence

Given a hereditary representation of a number n in base b, let B[b](n) be the nonnegative integer which results if we syntactically replace each b by b+1 (i.e., B[b] is a base change operator that 'bumps the base' from b up to b+1). The hereditary representation of 266 in base 2 is

266 = 2^8+2^3+2
(1)
= 2^(2^(2+1))+2^(2+1)+2,
(2)

so bumping the base from 2 to 3 yields

 B[2](266)=3^(3^(3+1))+3^(3+1)+3.
(3)

Now repeatedly bump the base and subtract 1,

G_0(266) = 266
(4)
= 2^(2^(2+1))+2^(2+1)+2
(5)
G_1(266) = B[2](266)-1=3^(3^(3+1))+3^(3+1)+2
(6)
G_2(266) = B[3](G_1)-1=4^(4^(4+1))+4^(4+1)+1
(7)
G_3(266) = B[4](G_2)-1=5^(5^(5+1))+5^(5+1)
(8)
G_4(266) = B[5](G_3)-1=6^(6^(6+1))+6^(6+1)-1
(9)
= 6^(6^(6+1))+5·6^6+5·6^5+...+5·6+5
(10)
 
(11)
G_5(266) = B[6](G_4)-1
(12)
= 7^(7^(7+1))+5·7^7+5·7^5+...+5·7+4,
(13)
 
(14)

etc.

Starting this procedure at an integer n gives the Goodstein sequence {G_k(n)}. Amazingly, despite the apparent rapid increase in the terms of the sequence, Goodstein's theorem states that G_k(n) is 0 for any n and any sufficiently large k. Even more amazingly, Paris and Kirby showed in 1982 that Goodstein's theorem is not provable in ordinary Peano arithmetic (Borwein and Bailey 2003, p. 35).


Bugün 50 ziyaretçi (67 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol