Ana Sayfa
Matematikçiler
Makaleler
Matematik Seçkileri
Fraktallar
Paradokslar
Sayılar Teorisi
=> Algebraic Curves-Mordell Curve
=> Algebraic Curves-Ochoa Curve
=> Algebraic Integer
=> Algebraic Number
=> Algebraic Number Theory
=> Chebotarev Density Theorem
=> Class Field
=> Cyclotomic Field
=> Dedekind Ring
=> Fractional Ideal
=> Global Field
=> Local Field
=> Number Field Signature
=> Picard Group
=> Pisot Number
=> Weyl Sum
=> Casting Out Nines
=> A-Sequence
=> Anomalous Cancellation
=> Archimedes' Axiom
=> B2-Sequence
=> Calcus
=> Calkin-Wilf Tree
=> Egyptian Fraction
=> Egyptian Number
=> Erdős-Straus Conjecture
=> Erdős-Turán Conjecture
=> Eye of Horus Fraction
=> Farey Sequence
=> Ford Circle
=> Irreducible Fraction
=> Mediant
=> Minkowski's Question Mark Function
=> Pandigital Fraction
=> Reverse Polish Notation
=> Division by Zero
=> Infinite Product
=> Karatsuba Multiplication
=> Lattice Method
=> Pippenger Product
=> Reciprocal
=> Russian Multiplication
=> Solidus
=> Steffi Problem
=> Synthetic Division
=> Binary
=> Euler's Totient Rule
=> Goodstein Sequence
=> Hereditary Representation
=> Least Significant Bit
=> Midy's Theorem
=> Moser-de Bruijn Sequence
=> Negabinary
=> Negadecimal
=> Nialpdrome
=> Nonregular Number
=> Normal Number
=> One-Seventh Ellipse
=> Quaternary
=> Radix
=> Regular Number
=> Repeating Decimal
=> Saunders Graphic
=> Ternary
=> Unique Prime
=> Vigesimal
Ziyaretçi defteri
 

Negadecimal

The negadecimal representation of a number n is its representation in base -10 (i.e., base negative 10). It is therefore given by the coefficients a_na_(n-1)...a_1a_0 in

n = sum_(i=0)a_i(-10)^i
(1)
= ...+a_2(-10)^2+a_1(-10)^1+a_0(-10)^0,
(2)

where a_i=0, 1, ..., 9.

The negadecimal digits may be obtained with the Mathematica code

Negadecimal[0] := {0}
Negadecimal[i_] := Rest @ Reverse @
Mod[NestWhileList[(# - Mod[#, 10])/-10&,
i, # != 0& ], 10]

The following table gives the negadecimal representations for the first few integers (A039723).

n negadecimal n negadecimal n negadecimal
1 1 11 191 21 181
2 2 12 192 22 182
3 3 13 193 23 183
4 4 14 194 24 184
5 5 15 195 25 185
6 6 16 196 26 186
7 7 17 197 27 187
8 8 18 198 28 188
9 9 19 199 29 189
10 190 20 180 30 170

The numbers having the same decimal and negadecimal representations are those which are sums of distinct powers of 100: 1, 2, 3, 4, 5, 6, 7, 8, 9, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 200, ... (Sloane's A051022).

 

Bugün 130 ziyaretçi (149 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol