Ana Sayfa
Matematikçiler
Makaleler
Matematik Seçkileri
Fraktallar
=> Apollonian Gasket
=> Barnsley's Fern
=> Barnsley's Tree
=> Batrachion
=> Blancmange Function
=> Box Fractal
=> Brown Function
=> Cactus Fractal
=> Cantor Dust
=> Cantor Function
=> Cantor Set
=> Cantor Square Fractal
=> Capacity Dimension
=> Carotid-Kundalini Fractal
=> Cesàro Fractal
=> Chaos Game
=> Circles-and-Squares Fractal
=> Coastline Paradox
=> Correlation Exponent
=> Count
=> Cross-Stitch Curve
=> Curlicue Fractal
=> Delannoy Number
=> Dendrite Fractal
=> Devil's Staircase
=> Douady's Rabbit Fractal
=> Dragon Curve
=> Elephant Valley
=> Exterior Snowflake
=> Gosper Island
=> H-Fractal
=> Haferman Carpet
=> Hénon Map
=> Hilbert Curve
=> Householder's Method
=> Ice Fractal
=> Julia Set
=> Koch Antisnowflake
=> Koch Snowflake
=> Lévy Fractal
=> Lévy Tapestry
=> Lindenmayer System
=> Mandelbrot Set
=> Mandelbrot Set Lemniscate
=> Mandelbrot Tree
=> Menger Sponge
=> Minkowski Sausage
=> Mira Fractal
=> Newton's Method
=> Peano Curve
=> Peano-Gosper Curve
=> Pentaflake
=> Plane-Filling Function
=> Pythagoras Tree
=> Randelbrot Set
=> Rep-Tile
=> Reverend Back's Abbey Floor
=> San Marco Fractal
=> Sea Horse Valley
=> Siegel Disk Fractal
=> Sierpiński Arrowhead Curve
=> Sierpiński Carpet
=> Sierpiński Curve
=> Sierpiński Sieve
=> Star Fractal
=> Strange Attractor
=> Tetrix
Paradokslar
Sayılar Teorisi
Ziyaretçi defteri
 

Plane-Filling Function

 
PlaneFillingFunction

A space-filling function which maps a one-dimensional interval into a two-dimensional area. Plane-filling functions were thought to be impossible until Hilbert discovered the Hilbert curve in 1891.

Plane-filling functions are often (imprecisely) defined to be the "limit" of an infinite sequence of specified curves which "fill" the plane without "holes," hence the more popular term plane-filling curve. The term "plane-filling function" is preferable to "plane-filling curve" because "curve" informally connotes "function graph" (i.e., range) of some continuous function, but the function graph of a plane-filling function is a solid patch of two-space with no evidence of the order in which it was traced (and, for a dense set, retraced). Actually, all that is needed to rigorously define a plane-filling function is an arbitrarily refinable correspondence between contiguous subintervals of the domain and contiguous subareas of the range.

True plane-filling functions are not one-to-one. In fact, because they map closed intervals onto closed areas, they cannot help but overfill, revisiting at least twice a dense subset of the filled area. Thus, every point in the filled area has at least one inverse image.

 

Bugün 26 ziyaretçi (33 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol