Ana Sayfa
Matematikçiler
Makaleler
Matematik Seçkileri
Fraktallar
=> Apollonian Gasket
=> Barnsley's Fern
=> Barnsley's Tree
=> Batrachion
=> Blancmange Function
=> Box Fractal
=> Brown Function
=> Cactus Fractal
=> Cantor Dust
=> Cantor Function
=> Cantor Set
=> Cantor Square Fractal
=> Capacity Dimension
=> Carotid-Kundalini Fractal
=> Cesàro Fractal
=> Chaos Game
=> Circles-and-Squares Fractal
=> Coastline Paradox
=> Correlation Exponent
=> Count
=> Cross-Stitch Curve
=> Curlicue Fractal
=> Delannoy Number
=> Dendrite Fractal
=> Devil's Staircase
=> Douady's Rabbit Fractal
=> Dragon Curve
=> Elephant Valley
=> Exterior Snowflake
=> Gosper Island
=> H-Fractal
=> Haferman Carpet
=> Hénon Map
=> Hilbert Curve
=> Householder's Method
=> Ice Fractal
=> Julia Set
=> Koch Antisnowflake
=> Koch Snowflake
=> Lévy Fractal
=> Lévy Tapestry
=> Lindenmayer System
=> Mandelbrot Set
=> Mandelbrot Set Lemniscate
=> Mandelbrot Tree
=> Menger Sponge
=> Minkowski Sausage
=> Mira Fractal
=> Newton's Method
=> Peano Curve
=> Peano-Gosper Curve
=> Pentaflake
=> Plane-Filling Function
=> Pythagoras Tree
=> Randelbrot Set
=> Rep-Tile
=> Reverend Back's Abbey Floor
=> San Marco Fractal
=> Sea Horse Valley
=> Siegel Disk Fractal
=> Sierpiński Arrowhead Curve
=> Sierpiński Carpet
=> Sierpiński Curve
=> Sierpiński Sieve
=> Star Fractal
=> Strange Attractor
=> Tetrix
Paradokslar
Sayılar Teorisi
Ziyaretçi defteri
 

Hénon Map

There are at least two maps known as the Hénon map.

The first is the two-dimensional dissipative quadratic map given by the coupled equations

x_(n+1) = 1-alphax_n^2+y_n
(1)
y_(n+1) = betax_n
(2)

(Hénon 1976).

HenonMap

The strange attractor illustrated above is obtained for alpha=1.4 and beta=0.3.

HenonMapEscape

The illustration above shows two regions of space for the map with alpha=0.2 and beta=1.01 colored according to the number of iterations required to escape (Michelitsch and Rössler 1989).

HenonMaps

The plots above show evolution of the point (0,0) for parameters (alpha,beta)=(0.2,0.9991) (left) and (0.2,-0.9999) (right).

The Hénon map has correlation exponent 1.25+/-0.02 (Grassberger and Procaccia 1983) and capacity dimension 1.261+/-0.003 (Russell et al. 1980). Hitzl and Zele (1985) give conditions for the existence of periods 1 to 6.

A second Hénon map is the quadratic area-preserving map

x_(n+1) = x_ncosalpha-(y_n-x_n^2)sinalpha
(3)
y_(n+1) = x_nsinalpha+(y_n-x_n^2)cosalpha
(4)

(Hénon 1969), which is one of the simplest two-dimensional invertible maps.

 

Bugün 83 ziyaretçi (92 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol