Ana Sayfa
Matematikçiler
Makaleler
Matematik Seçkileri
Fraktallar
=> Apollonian Gasket
=> Barnsley's Fern
=> Barnsley's Tree
=> Batrachion
=> Blancmange Function
=> Box Fractal
=> Brown Function
=> Cactus Fractal
=> Cantor Dust
=> Cantor Function
=> Cantor Set
=> Cantor Square Fractal
=> Capacity Dimension
=> Carotid-Kundalini Fractal
=> Cesàro Fractal
=> Chaos Game
=> Circles-and-Squares Fractal
=> Coastline Paradox
=> Correlation Exponent
=> Count
=> Cross-Stitch Curve
=> Curlicue Fractal
=> Delannoy Number
=> Dendrite Fractal
=> Devil's Staircase
=> Douady's Rabbit Fractal
=> Dragon Curve
=> Elephant Valley
=> Exterior Snowflake
=> Gosper Island
=> H-Fractal
=> Haferman Carpet
=> Hénon Map
=> Hilbert Curve
=> Householder's Method
=> Ice Fractal
=> Julia Set
=> Koch Antisnowflake
=> Koch Snowflake
=> Lévy Fractal
=> Lévy Tapestry
=> Lindenmayer System
=> Mandelbrot Set
=> Mandelbrot Set Lemniscate
=> Mandelbrot Tree
=> Menger Sponge
=> Minkowski Sausage
=> Mira Fractal
=> Newton's Method
=> Peano Curve
=> Peano-Gosper Curve
=> Pentaflake
=> Plane-Filling Function
=> Pythagoras Tree
=> Randelbrot Set
=> Rep-Tile
=> Reverend Back's Abbey Floor
=> San Marco Fractal
=> Sea Horse Valley
=> Siegel Disk Fractal
=> Sierpiński Arrowhead Curve
=> Sierpiński Carpet
=> Sierpiński Curve
=> Sierpiński Sieve
=> Star Fractal
=> Strange Attractor
=> Tetrix
Paradokslar
Sayılar Teorisi
Ziyaretçi defteri
 

Haferman Carpet

 
HafermanCarpet

The Haferman carpet is the beautiful fractal constructed using string rewriting beginning with a cell [1] and iterating the rules

 {0->[1 1 1; 1 1 1; 1 1 1],1->[0 1 0; 1 0 1; 0 1 0]}
(1)

(Allouche and Shallit 2003, p. 407).

Haferman carpet

Taking five iterations gives the beautiful pattern illustrated above.

This fractal also appears on the cover of Allouche and Shallit (2003).

Let N_n be the number of black boxes, L_n the length of a side of a white box, and A_n the fractional area of black boxes after the nth iteration. Then

N_n = 1/(14)[(-1)^n5^(n+1)+9^(n+1)]
(2)
L_n = 3^(-n).
(3)

The numbers of black cells after n=0, 1, 2, ... iterations are therefore 1, 4, 61, 424, 4441, 36844, ... (Sloane's A118005). The capacity dimension is therefore

d_(cap) = -lim_(n->infty)(lnN_n)/(lnL_n)
(4)
= 2.
(5)
 

Bugün 33 ziyaretçi (40 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol