Ana Sayfa
Matematikçiler
Makaleler
Matematik Seçkileri
Fraktallar
=> Apollonian Gasket
=> Barnsley's Fern
=> Barnsley's Tree
=> Batrachion
=> Blancmange Function
=> Box Fractal
=> Brown Function
=> Cactus Fractal
=> Cantor Dust
=> Cantor Function
=> Cantor Set
=> Cantor Square Fractal
=> Capacity Dimension
=> Carotid-Kundalini Fractal
=> Cesàro Fractal
=> Chaos Game
=> Circles-and-Squares Fractal
=> Coastline Paradox
=> Correlation Exponent
=> Count
=> Cross-Stitch Curve
=> Curlicue Fractal
=> Delannoy Number
=> Dendrite Fractal
=> Devil's Staircase
=> Douady's Rabbit Fractal
=> Dragon Curve
=> Elephant Valley
=> Exterior Snowflake
=> Gosper Island
=> H-Fractal
=> Haferman Carpet
=> Hénon Map
=> Hilbert Curve
=> Householder's Method
=> Ice Fractal
=> Julia Set
=> Koch Antisnowflake
=> Koch Snowflake
=> Lévy Fractal
=> Lévy Tapestry
=> Lindenmayer System
=> Mandelbrot Set
=> Mandelbrot Set Lemniscate
=> Mandelbrot Tree
=> Menger Sponge
=> Minkowski Sausage
=> Mira Fractal
=> Newton's Method
=> Peano Curve
=> Peano-Gosper Curve
=> Pentaflake
=> Plane-Filling Function
=> Pythagoras Tree
=> Randelbrot Set
=> Rep-Tile
=> Reverend Back's Abbey Floor
=> San Marco Fractal
=> Sea Horse Valley
=> Siegel Disk Fractal
=> Sierpiński Arrowhead Curve
=> Sierpiński Carpet
=> Sierpiński Curve
=> Sierpiński Sieve
=> Star Fractal
=> Strange Attractor
=> Tetrix
Paradokslar
Sayılar Teorisi
Ziyaretçi defteri
 

Cantor Square Fractal

 
CantorsSquare

A fractal which can be constructed using string rewriting beginning with a cell [1] and iterating the rules

 {0->[0 1 0; 1 1 1; 0 1 0],1->[1 1 1; 1 1 1; 1 1 1]}.
(1)

The size of the unit element after the nth iteration is

 L_n=(1/3)^n
(2)

and the number of elements is given by the recurrence relation

 N_n=4N_(n-1)+5(9^n)
(3)

where N_1=5, and the first few numbers of elements are 5, 65, 665, 6305, ... (Sloane's A118004). Expanding out gives

 N_n=5sum_(k=0)^n4^(n-k)9^(k-1)=9^n-4^n.
(4)

The capacity dimension is therefore

D = -lim_(n->infty)(lnN_n)/(lnL_n)
(5)
= 2.
(6)

Since the dimension of the filled part is 2 (i.e., the square is completely filled), Cantor's square fractal is not a true fractal.

 

Bugün 91 ziyaretçi (101 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol