Ana Sayfa
Matematikçiler
Makaleler
Matematik Seçkileri
Fraktallar
=> Apollonian Gasket
=> Barnsley's Fern
=> Barnsley's Tree
=> Batrachion
=> Blancmange Function
=> Box Fractal
=> Brown Function
=> Cactus Fractal
=> Cantor Dust
=> Cantor Function
=> Cantor Set
=> Cantor Square Fractal
=> Capacity Dimension
=> Carotid-Kundalini Fractal
=> Cesàro Fractal
=> Chaos Game
=> Circles-and-Squares Fractal
=> Coastline Paradox
=> Correlation Exponent
=> Count
=> Cross-Stitch Curve
=> Curlicue Fractal
=> Delannoy Number
=> Dendrite Fractal
=> Devil's Staircase
=> Douady's Rabbit Fractal
=> Dragon Curve
=> Elephant Valley
=> Exterior Snowflake
=> Gosper Island
=> H-Fractal
=> Haferman Carpet
=> Hénon Map
=> Hilbert Curve
=> Householder's Method
=> Ice Fractal
=> Julia Set
=> Koch Antisnowflake
=> Koch Snowflake
=> Lévy Fractal
=> Lévy Tapestry
=> Lindenmayer System
=> Mandelbrot Set
=> Mandelbrot Set Lemniscate
=> Mandelbrot Tree
=> Menger Sponge
=> Minkowski Sausage
=> Mira Fractal
=> Newton's Method
=> Peano Curve
=> Peano-Gosper Curve
=> Pentaflake
=> Plane-Filling Function
=> Pythagoras Tree
=> Randelbrot Set
=> Rep-Tile
=> Reverend Back's Abbey Floor
=> San Marco Fractal
=> Sea Horse Valley
=> Siegel Disk Fractal
=> Sierpiński Arrowhead Curve
=> Sierpiński Carpet
=> Sierpiński Curve
=> Sierpiński Sieve
=> Star Fractal
=> Strange Attractor
=> Tetrix
Paradokslar
Sayılar Teorisi
Ziyaretçi defteri
 

Menger Sponge

MengerSponge3

A fractal which is the three-dimensional analog of the Sierpiński carpet. Let N_n be the number of filled boxes, L_n the length of a side of a hole, and V_n the fractional volume after the nth iteration.

N_n = 20^n
(1)
L_n = (1/3)^n=3^(-n)
(2)
V_n = L_n^3N_n=((20)/(27))^n.
(3)

The capacity dimension is therefore

d_(cap) = -lim_(n->infty)(lnN_n)/(lnL_n)
(4)
= log_320
(5)
= (ln20)/(ln3)
(6)
= 2.726833028...
(7)

(Sloane's A102447).

The Menger sponge, in addition to being a fractal, is also a super-object for all compact one-dimensional objects, i.e., the topological equivalent of all one-dimensional objects can be found in a Menger sponge (Peitgen et al. 1992).

Menger sponge metal sculpture (Bathsheba Grossman)

The image above shows a metal print of the Menger sponge created by digital sculptor Bathsheba Grossman (http://www.bathsheba.com/).

J. Mosely is leading an effort to construct a large Menger sponge out of old business cards.

 

Bugün 62 ziyaretçi (70 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol