Ana Sayfa
Matematikçiler
Makaleler
Matematik Seçkileri
Fraktallar
=> Apollonian Gasket
=> Barnsley's Fern
=> Barnsley's Tree
=> Batrachion
=> Blancmange Function
=> Box Fractal
=> Brown Function
=> Cactus Fractal
=> Cantor Dust
=> Cantor Function
=> Cantor Set
=> Cantor Square Fractal
=> Capacity Dimension
=> Carotid-Kundalini Fractal
=> Cesàro Fractal
=> Chaos Game
=> Circles-and-Squares Fractal
=> Coastline Paradox
=> Correlation Exponent
=> Count
=> Cross-Stitch Curve
=> Curlicue Fractal
=> Delannoy Number
=> Dendrite Fractal
=> Devil's Staircase
=> Douady's Rabbit Fractal
=> Dragon Curve
=> Elephant Valley
=> Exterior Snowflake
=> Gosper Island
=> H-Fractal
=> Haferman Carpet
=> Hénon Map
=> Hilbert Curve
=> Householder's Method
=> Ice Fractal
=> Julia Set
=> Koch Antisnowflake
=> Koch Snowflake
=> Lévy Fractal
=> Lévy Tapestry
=> Lindenmayer System
=> Mandelbrot Set
=> Mandelbrot Set Lemniscate
=> Mandelbrot Tree
=> Menger Sponge
=> Minkowski Sausage
=> Mira Fractal
=> Newton's Method
=> Peano Curve
=> Peano-Gosper Curve
=> Pentaflake
=> Plane-Filling Function
=> Pythagoras Tree
=> Randelbrot Set
=> Rep-Tile
=> Reverend Back's Abbey Floor
=> San Marco Fractal
=> Sea Horse Valley
=> Siegel Disk Fractal
=> Sierpiński Arrowhead Curve
=> Sierpiński Carpet
=> Sierpiński Curve
=> Sierpiński Sieve
=> Star Fractal
=> Strange Attractor
=> Tetrix
Paradokslar
Sayılar Teorisi
Ziyaretçi defteri
 

Delannoy Number

The Delannoy numbers D(a,b) are the number of lattice paths from (0,0) to (b,a) in which only east (1, 0), north (0, 1), and northeast (1, 1) steps are allowed (i.e., ->, ^, and ->). They are given by the recurrence relation

 D(a,b)=D(a-1,b)+D(a,b-1)+D(a-1,b-1),
(1)

with D(0,0)=1. The are also given by the sums

D(n,k) = sum_(d=0)^(n)(k; d)(n+k-d; k)
(2)
= sum_(d=0)^(n)2^d(k; d)(n; d)
(3)
= (n+k; k)_2F_1(-n,-k;-(k+n);-1),
(4)

where _2F_1(a,b;c;z) is a hypergeometric function.

A table for values for the Delannoy numbers is given by

 1 1 1 1 1 1 1 1 1 ...; 1 3 5 7 9 11 13 15 17 ...; 1 5 13 25 41 61 85 113 145 ...; 1 7 25 63 129 231 377 575 833 ...; 1 9 41 129 321 681 1289 2241 3649 ...; 1 11 61 231 681 1683 3653 7183 13073 ...
(5)

(Sloane's A008288 ).

They have the generating function

 sum_(p,q=1)^inftyD(p,q)x^py^q=(1-x-y-xy)^(-1)
(6)

(Comtet 1974, p. 81).

DelannoyNumber

Taking n=a=b gives the central Delannoy numbers D(n,n), which are the number of "king walks" from the (0,0) corner of an n×n square to the upper right corner (n,n). These are given by

 D(n,n)=P_n(3),
(7)

where P_n(x) is a Legendre polynomial (Moser 1955; Comtet 1974, p. 81; Vardi 1991). Another expression is

D(n,n) = sum_(k=0)^(n)(n; k)(n+k; k)
(8)
= _2F_1(-n,n+1;1,-1),
(9)

where (a; b) is a binomial coefficient and _2F_1(a,b;c;z) is a hypergeometric function. These numbers have a surprising connection with the Cantor set (E. W. Weisstein, Apr. 9, 2006).

They also satisfy the recurrence equation

 D(n)=(3(2n-1)D(n-1)-(n-1)D(n-2))/n.
(10)

They have generating function

G(x) = 1/(sqrt(1-6x+x^2))
(11)
= 1+3x+13x^2+63x^3+321x^4+....
(12)

The values of D(n,n) for n=1, 2, ... are 3, 13, 63, 321, 1683, 8989, 48639, ... (Sloane's A001850). The numbers of decimal digits in D(10^n,10^n) for n=0, 1, ... are 1, 7, 76, 764, 7654, 76553, 765549, 7655510, ... (Sloane's A114470), where the digits approach those of log_(10)(3+2sqrt(2))=0.765551... (Sloane's A114491).

The first few prime Delannoy numbers are 3, 13, 265729, ... (Sloane's A092830), corresponding to indices 1, 2, 8, ..., with no others for n<1.1×10^5 (Weisstein, Mar. 8, 2004).

The Schröder numbers bear the same relation to the Delannoy numbers as the Catalan numbers do to the binomial coefficients.

Amazingly, taking the Cholesky decomposition of the square array of D(a,b), transposing, and multiplying it by the diagonal matrix diag(2^(-0/2),2^(-1/2),2^(-2/2),...) gives the square matrix (i.e., lower triangular) version of Pascal's triangle (G. Helms, pers. comm., Aug. 29, 2005).

DelannoyNumberArrays

Beautiful fractal patterns can be obtained by plotting D(a,b) (mod m) (E. Pegg, Jr., pers. comm., Aug. 29, 2005). In particular, the m=3 case corresponds to a pattern resembling the Sierpiński carpet.

 

Bugün 56 ziyaretçi (63 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol