Ana Sayfa
Matematikçiler
Makaleler
Matematik Seçkileri
=> Ajima-Malfatti Points
=> Kissing Number
=> Quaternion
=> Lotka-Volterra Equations
=> Euler Differential Equation
=> Dilogarithm
=> Abelian Category
=> Base
=> Steenrod Algebra
=> Gamma Function
=> Bessel Functions
=> Jacobi Symbol
=> Quadratic Curve Discriminant
=> Illumination Problem
=> Sylvester's Four-Point Problem
=> Triangle Interior
=> 6-Sphere Coordinates
=> Mordell Curve
=> Zermelo-Fraenkel Axioms
=> Peano's Axioms
=> De Morgan's Laws
=> Kolmogorov's Axioms
Fraktallar
Paradokslar
Sayılar Teorisi
Ziyaretçi defteri
 

Quadratic Curve Discriminant

Given a general quadratic curve

 Ax^2+Bxy+Cy^2+Dx+Ey+F=0,
(1)

the quantity X is known as the discriminant, where

 X=B^2-4AC,
(2)

and is invariant under rotation. Using the coefficients from quadratic equations for a rotation by an angle theta,

A^' = 1/2A[1+cos(2theta)]+1/2Bsin(2theta)+1/2C[1-cos(2theta)]
(3)
 
(4)
= (A+C)/2+B/2sin(2theta)+(A-C)/2cos(2theta)
(5)
B^' = Gcos(2theta+delta-pi/2)=Gsin(2theta+delta)
(6)
C^' = 1/2A[1-cos(2theta)]-1/2Bsin(2theta)+1/2C[1+cos(2theta)]
(7)
 
(8)
= (A+C)/2-B/2sin(2theta)+(C-A)/2cos(2theta).
(9)

Now let

G = sqrt(B^2+(A-C)^2)
(10)
delta = tan^(-1)(B/(C-A))
(11)
delta_2 = tan^(-1)((A-C)/B)
(12)
= -cot^(-1)(B/(C-A)),
(13)

and use

cot^(-1)(x) = 1/2pi-tan^(-1)(x)
(14)
delta_2 = delta-1/2pi
(15)

to rewrite the primed variables

A^' = (A+C)/2+1/2Gcos(2theta+delta)
(16)
B^' = Bcos(2theta)+(C-A)sin(2theta)
(17)
= Gcos(2theta+delta_2)
(18)
C^' = (A+C)/2-1/2Gcos(2theta+delta).
(19)

From (17) and (19), it follows that

 4A^'C^'=(A+C)^2-G^2cos(2theta+delta).
(20)

Combining with (18) yields, for an arbitrary theta

X = B^('2)-4A^'C^'
(21)
= G^2sin^2(2theta+delta)+G^2cos^2(2theta+delta)-(A+C)^2
(22)
 
(23)
= G^2-(A+C)^2=B^2+(A-C)^2-(A+C)^2
(24)
 
(25)
= B^2-4AC,
(26)

which is therefore invariant under rotation. This invariant therefore provides a useful shortcut to determining the shape represented by a quadratic curve. Choosing theta to make B^'=0 (see quadratic equation), the curve takes on the form

 A^'x^2+C^'y^2+D^'x+E^'y+F=0.
(27)

Completing the square and defining new variables gives

 A^'x^('2)+C^'y^('2)=H.
(28)

Without loss of generality, take the sign of H to be positive. The discriminant is

 X=B^('2)-4A^'C^'=-4A^'C^'.
(29)

Now, if -4A^'C^'<0, then A^' and C^' both have the same sign, and the equation has the general form of an ellipse (if A^' and B^' are positive). If -4A^'C^'>0, then A^' and C^' have opposite signs, and the equation has the general form of a hyperbola. If -4A^'C^'=0, then either A^' or C^' is zero, and the equation has the general form of a parabola (if the nonzero A^' or C^' is positive). Since the discriminant is invariant, these conclusions will also hold for an arbitrary choice of theta, so they also hold when -4A^'C^' is replaced by the original B^2-4AC. The general result is

1. If B^2-4AC<0, the equation represents an ellipse, a circle (degenerate ellipse), a point (degenerate circle), or has no graph.

2. If B^2-4AC>0, the equation represents a hyperbola or pair of intersecting lines (degenerate hyperbola).

3. If B^2-4AC=0, the equation represents a parabola, a line (degenerate parabola), a pair of parallel lines (degenerate parabola), or has no graph.

 

Bugün 119 ziyaretçi (212 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol