Ana Sayfa
Matematikçiler
Makaleler
Matematik Seçkileri
=> Ajima-Malfatti Points
=> Kissing Number
=> Quaternion
=> Lotka-Volterra Equations
=> Euler Differential Equation
=> Dilogarithm
=> Abelian Category
=> Base
=> Steenrod Algebra
=> Gamma Function
=> Bessel Functions
=> Jacobi Symbol
=> Quadratic Curve Discriminant
=> Illumination Problem
=> Sylvester's Four-Point Problem
=> Triangle Interior
=> 6-Sphere Coordinates
=> Mordell Curve
=> Zermelo-Fraenkel Axioms
=> Peano's Axioms
=> De Morgan's Laws
=> Kolmogorov's Axioms
Fraktallar
Paradokslar
Sayılar Teorisi
Ziyaretçi defteri
 

Kolmogorov's Axioms

Let Q_i denote anything subject to weighting by a normalized linear scheme of weights that sum to unity in a set W. The Kolmogorov axioms state that

1. For every Q_i in W, there is a real number Q(Q_i) (the Kolmogorov weight of Q_i) such that

 0<Q(Q_i)<1.

2. Q(Q_i)+Q(Q^__i)=1, where Q^__i denotes the complement of Q_i in W.

3. For the mutually exclusive subsets Q_1, Q_2, ... in W,

 Q(Q_1 union Q_2 union Q_3 union ...)=Q(Q_1)+Q(Q_2)+Q(Q_3)+....
 

Bugün 120 ziyaretçi (213 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol