Ana Sayfa
Matematikçiler
Makaleler
Matematik Seçkileri
=> Ajima-Malfatti Points
=> Kissing Number
=> Quaternion
=> Lotka-Volterra Equations
=> Euler Differential Equation
=> Dilogarithm
=> Abelian Category
=> Base
=> Steenrod Algebra
=> Gamma Function
=> Bessel Functions
=> Jacobi Symbol
=> Quadratic Curve Discriminant
=> Illumination Problem
=> Sylvester's Four-Point Problem
=> Triangle Interior
=> 6-Sphere Coordinates
=> Mordell Curve
=> Zermelo-Fraenkel Axioms
=> Peano's Axioms
=> De Morgan's Laws
=> Kolmogorov's Axioms
Fraktallar
Paradokslar
Sayılar Teorisi
Ziyaretçi defteri
 

Ajima-Malfatti Points

 
   
Ajima-MalfattiPoints

The lines connecting the vertices and corresponding circle-circle intersections in Malfatti's problem coincide in a point X_(179) called the first Ajima-Malfatti point (Kimberling and MacDonald 1990, Kimberling 1994). This point has triangle center function

 alpha_(179)=sec^4(1/4A).
Ajima-MalfattiPoint2

Similarly, letting A^(''), B^(''), and C^('') be the excenters of DeltaABC, then the lines A^'A^(''), B^'B^(''), and C^'C^('') are coincident in another point called the second Ajima-Malfatti point, which is Kimberling center X_(180) (but is at present given erroneously in Kimberling's tabulation).

These points are sometimes simply called the Malfatti points (Kimberling 1994).

 

Bugün 45 ziyaretçi (58 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol