Ana Sayfa
Matematikçiler
Makaleler
Matematik Seçkileri
=> Ajima-Malfatti Points
=> Kissing Number
=> Quaternion
=> Lotka-Volterra Equations
=> Euler Differential Equation
=> Dilogarithm
=> Abelian Category
=> Base
=> Steenrod Algebra
=> Gamma Function
=> Bessel Functions
=> Jacobi Symbol
=> Quadratic Curve Discriminant
=> Illumination Problem
=> Sylvester's Four-Point Problem
=> Triangle Interior
=> 6-Sphere Coordinates
=> Mordell Curve
=> Zermelo-Fraenkel Axioms
=> Peano's Axioms
=> De Morgan's Laws
=> Kolmogorov's Axioms
Fraktallar
Paradokslar
Sayılar Teorisi
Ziyaretçi defteri
 

6-Sphere Coordinates

 
6-SphereCoordinates

The coordinate system obtained by inversion of Cartesian coordinates, with u,v,w in (-infty,infty). The transformation equations are

x = u/(u^2+v^2+w^2)
(1)
y = v/(u^2+v^2+w^2)
(2)
z = w/(u^2+v^2+w^2).
(3)

The equations of the surfaces of constant coordinates are given by

 (x-1/(2u))^2+y^2+z^2=1/(4u^2),
(4)

which gives spheres tangent to the yz-plane at the origin for u constant,

 x^2+(y-1/(2v))^2+z^2=1/(4v^2),
(5)

which gives spheres tangent to xz-plane at the origin for v constant, and

 x^2+y^2+(z-1/(2w))^2=1/(4w^2),
(6)

which gives spheres tangent to the xy-plane at the origin for w constant.

The metric coefficients are

 g_(uu)=g_(vv)=g_(ww)=1/((u^2+v^2+w^2)^2).
(7)
 

Bugün 103 ziyaretçi (196 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol