Ana Sayfa
Matematikçiler
Makaleler
Matematik Seçkileri
Fraktallar
Paradokslar
Sayılar Teorisi
=> Algebraic Curves-Mordell Curve
=> Algebraic Curves-Ochoa Curve
=> Algebraic Integer
=> Algebraic Number
=> Algebraic Number Theory
=> Chebotarev Density Theorem
=> Class Field
=> Cyclotomic Field
=> Dedekind Ring
=> Fractional Ideal
=> Global Field
=> Local Field
=> Number Field Signature
=> Picard Group
=> Pisot Number
=> Weyl Sum
=> Casting Out Nines
=> A-Sequence
=> Anomalous Cancellation
=> Archimedes' Axiom
=> B2-Sequence
=> Calcus
=> Calkin-Wilf Tree
=> Egyptian Fraction
=> Egyptian Number
=> Erdős-Straus Conjecture
=> Erdős-Turán Conjecture
=> Eye of Horus Fraction
=> Farey Sequence
=> Ford Circle
=> Irreducible Fraction
=> Mediant
=> Minkowski's Question Mark Function
=> Pandigital Fraction
=> Reverse Polish Notation
=> Division by Zero
=> Infinite Product
=> Karatsuba Multiplication
=> Lattice Method
=> Pippenger Product
=> Reciprocal
=> Russian Multiplication
=> Solidus
=> Steffi Problem
=> Synthetic Division
=> Binary
=> Euler's Totient Rule
=> Goodstein Sequence
=> Hereditary Representation
=> Least Significant Bit
=> Midy's Theorem
=> Moser-de Bruijn Sequence
=> Negabinary
=> Negadecimal
=> Nialpdrome
=> Nonregular Number
=> Normal Number
=> One-Seventh Ellipse
=> Quaternary
=> Radix
=> Regular Number
=> Repeating Decimal
=> Saunders Graphic
=> Ternary
=> Unique Prime
=> Vigesimal
Ziyaretçi defteri
 

Reciprocal

Reciprocal

The reciprocal of a real or complex number z!=0 is its multiplicative inverse 1/z=z^(-1), i.e., z to the power -1. The reciprocal of zero is undefined. A plot of the reciprocal of a real number x is plotted above for -2<=x<=2.

Two numbers are reciprocals if and only if their product is 1. To put it another way, a number and its reciprocal are inversely related. Therefore, the larger a (positive) number, the smaller its reciprocal.

ReciprocalReIm
ReciprocalContours

The reciprocal of a complex number z=x+iy is given by

 1/(x+iy)=(x-iy)/(x^2+y^2)=x/(x^2+y^2)-y/(x^2+y^2)i.

Plots of the reciprocal in the complex plane are given above.

Given a geometric figure consisting of an assemblage of points, the polars with respect to an inversion circle constitute another figure. These figures are said to be reciprocal with respect to each other. Then there exists a duality principle which states that theorems for the original figure can be immediately applied to the reciprocal figure after suitable modification (Lachlan 1893).


Bugün 87 ziyaretçi (104 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol