Ana Sayfa
Matematikçiler
Makaleler
Matematik Seçkileri
Fraktallar
Paradokslar
Sayılar Teorisi
=> Algebraic Curves-Mordell Curve
=> Algebraic Curves-Ochoa Curve
=> Algebraic Integer
=> Algebraic Number
=> Algebraic Number Theory
=> Chebotarev Density Theorem
=> Class Field
=> Cyclotomic Field
=> Dedekind Ring
=> Fractional Ideal
=> Global Field
=> Local Field
=> Number Field Signature
=> Picard Group
=> Pisot Number
=> Weyl Sum
=> Casting Out Nines
=> A-Sequence
=> Anomalous Cancellation
=> Archimedes' Axiom
=> B2-Sequence
=> Calcus
=> Calkin-Wilf Tree
=> Egyptian Fraction
=> Egyptian Number
=> Erdős-Straus Conjecture
=> Erdős-Turán Conjecture
=> Eye of Horus Fraction
=> Farey Sequence
=> Ford Circle
=> Irreducible Fraction
=> Mediant
=> Minkowski's Question Mark Function
=> Pandigital Fraction
=> Reverse Polish Notation
=> Division by Zero
=> Infinite Product
=> Karatsuba Multiplication
=> Lattice Method
=> Pippenger Product
=> Reciprocal
=> Russian Multiplication
=> Solidus
=> Steffi Problem
=> Synthetic Division
=> Binary
=> Euler's Totient Rule
=> Goodstein Sequence
=> Hereditary Representation
=> Least Significant Bit
=> Midy's Theorem
=> Moser-de Bruijn Sequence
=> Negabinary
=> Negadecimal
=> Nialpdrome
=> Nonregular Number
=> Normal Number
=> One-Seventh Ellipse
=> Quaternary
=> Radix
=> Regular Number
=> Repeating Decimal
=> Saunders Graphic
=> Ternary
=> Unique Prime
=> Vigesimal
Ziyaretçi defteri
 

Infinite Product

 

A product involving an infinite number of terms. Such products can converge. In fact, for positive a_n, the product product_(n=1)^(infty)a_n converges to a nonzero number iff sum_(n=1)^(infty)lna_n converges.

Infinite products can be used to define the cosine

 cosx=product_(n=1)^infty[1-(4x^2)/(pi^2(2n-1)^2)],
(1)

gamma function

 Gamma(z)=[ze^(gammaz)product_(r=1)^infty(1+z/r)e^(-z/r)]^(-1),
(2)

sine, and sinc function. They also appear in polygon circumscribing,

 K=product_(n=3)^infty1/(cos(pi/n)).
(3)

An interesting infinite product formula due to Euler which relates pi and the nth prime p_n is

pi = 2/(product_(n=1)^(infty)[1+(sin(1/2pip_n))/(p_n)])
(4)
= 2/(product_(n=2)^(infty)[1+((-1)^((p_n-1)/2))/(p_n)])
(5)

(Blatner 1997). Knar's formula gives a functional equation for the gamma function Gamma(x) in terms of the infinite product

 Gamma(1+v)=2^(2v)product_(m=1)^infty[pi^(-1/2)Gamma(1/2+2^(-m)v)].
(6)

A regularized product identity is given by

 infty!=product_(k=1)^inftyk=sqrt(2pi)
(7)

(Muñoz Garcia and Pérez-Marco 2003, 2008).

Mellin's formula states

 product_(n=0)^infty(1+y/(n+x))e^(-y/(n+x))=(e^(ypsi_0(x))Gamma(x))/(Gamma(x+y)),
(8)

where psi_0(x) is the digamma function and Gamma(x) is the gamma function.

The following class of products

product_(n=2)^(infty)(n^2-1)/(n^2+1) = picschpi
(9)
product_(n=2)^(infty)(n^3-1)/(n^3+1) = 2/3
(10)
product_(n=2)^(infty)(n^4-1)/(n^4+1) = -1/2pisinhpicsc[(-1)^(1/4)pi]csc[(-1)^(3/4)pi]
(11)
= (pisinh(pi))/(cosh(sqrt(2)pi)-cos(sqrt(2)pi))
(12)
product_(n=2)^(infty)(n^5-1)/(n^5+1) = (2Gamma(-(-1)^(1/5))Gamma((-1)^(2/5))Gamma(-(-1)^(3/5))Gamma((-1)^(4/5)))/(5Gamma((-1)^(1/5))Gamma(-(-1)^(2/5))Gamma((-1)^(3/5))Gamma(-(-1)^(4/5)))
(13)

(Borwein et al. 2004, pp. 4-6), where Gamma(z) is the gamma function, the first of which is given in Borwein and Corless (1999), can be done analytically. In particular, for r>1,

 product_(n=1; n!=m)^infty(n^r-m^r)/(n^r+m^r)=(-1)^(m+1)(2mm!)/rproduct_(j=1)^(2r-1)[Gamma(-momega_r^j)]^((-1)^(j+1)),
(14)

where omega_k=e^(ipi/k) (Borwein et al. 2004, pp. 6-7). It is not known if (13) is algebraic, although it is known to satisfy no integer polynomial with degree less than 21 and Euclidean norm less than 5×10^(18) (Borwein et al. 2004, p. 7).

Products of the following form can be done analytically,

 product_(k=1)^infty((1+k^(-1))^2)/(1+2k^(-1))=2
            product_(k=1)^infty((1+k^(-1)+k^(-2))^2)/(1+2k^(-1)+3k^(-2))=(3sqrt(2)cosh^2(1/2pisqrt(3))csch(pisqrt(2)))/pi
            product_(k=1)^infty((1+k^(-1)+k^(-2)+k^(-3))^2)/(1+2k^(-1)+3k^(-2)+4k^(-3))=(sinh^2piproduct_(i=1)^(3)Gamma(x_i))/(pi^2)
            product_(k=1)^infty((1+k^(-1)+k^(-2)+k^(-3)+k^(-4))^2)/(1+2k^(-1)+3k^(-2)+4k^(-3)+5k^(-4))=product_(i=1)^4(Gamma(y_i))/(Gamma^2(z_i)),
(15)

where x_i, y_i, and z_i are the roots of

x^3-5x^2+10x-10 = 0
(16)
y^4-6y^3+15y^2-20y+15 = 0
(17)
z^4-5z^3+10z^2-10z+5 = 0,
(18)

respectively, can also be done analytically. Note that (17) and (18) were unknown to Borwein and Corless (1999). These are special cases of the result that

 product_(k=1)^infty(sum_(i=1)^(p)(a_i)/(k^i))/(sum_(i=0)^(q)(b_i)/(k^i))=(b_q)/(a_p)(product_(i=0)^(q)Gamma(-s_i))/(product_(i=0)^(p)Gamma(-r_i)),
(19)

if a_0=b_0=1 and a_1=b_1, where r_i is the ith root of sum_(j=0)^(p)a_j/k^j and s_i is the ith root of sum_(j=0)^(q)b_j/k^j (P. Abbott, pers. comm., Mar. 30, 2006).

For k>=2,

 product_(n=2)^infty(1-1/(n^k))={1/(kproduct_(j=1)^(k-1)Gamma((-1)^(1+j(1+1/k))))   for k odd; (product_(j=1)^((k/2)-1)sin[pi(-1)^(2j/k)])/(k(pii)^((k/2)-1))   for k even
(20)

(D. W. Cantrell, pers. comm., Apr. 18, 2006). The first few explicit cases are

product_(n=2)^(infty)(1-1/(n^2)) = 1/2
(21)
product_(n=2)^(infty)(1-1/(n^3)) = (cosh(1/2pisqrt(3)))/(3pi)
(22)
= 1/(3Gamma((-1)^(1/3))Gamma(-(-1)^(2/3)))
(23)
product_(n=2)^(infty)(1-1/(n^4)) = (sinhpi)/(4pi)
(24)
product_(n=2)^(infty)(1-1/(n^5)) = 1/(5Gamma((-1)^(1/5))Gamma(-(-1)^(2/5))Gamma((-1)^(3/5))Gamma(-(-1)^(4/5)))
(25)
product_(n=2)^(infty)(1-1/(n^6)) = (1+cosh(pisqrt(3)))/(12pi^2).
(26)

These are a special case of the general formula

 product_(k=1)^infty(1-(x^n)/(k^n))=-1/(x^n)product_(k=0)^(n-1)1/(Gamma(-e^(2piik/n)x))
(27)

(Prudnikov et al. 1986, p. 754).

Similarly, for k>=2,

 product_(n=1)^infty(1+1/(n^k))={1/(product_(j=1)^(k-1)Gamma[(-1)^(j(1+1/k))])   for k odd; (product_(j=1)^(k/2)sin[pi(-1)^((2j-1)/k)])/((pii)^(k/2))   for k even
(28)

(D. W. Cantrell, pers. comm., Mar. 29, 2006). The first few explicit cases are

product_(n=1)^(infty)(1+1/(n^2)) = (sinhpi)/pi
(29)
product_(n=1)^(infty)(1+1/(n^3)) = 1/picosh(1/2pisqrt(3))
(30)
product_(n=1)^(infty)(1+1/(n^4)) = (cosh(pisqrt(2))-cos(pisqrt(2)))/(2pi^2)
(31)
= -(sin[(-1)^(1/4)pi]sin[(-1)^(3/4)pi])/(pi^2)
(32)
product_(n=1)^(infty)(1+1/(n^5)) = |Gamma[exp(2/5pii)]Gamma[exp(6/5pii)]|^(-2)
(33)
product_(n=1)^(infty)(1+1/(n^6)) = (sinhpi[coshpi-cos(sqrt(3)pi)])/(2pi^3).
(34)

The d-analog expression

 [infty!]_d=product_(n=3)^infty(1-(2^d)/(n^d))
(35)

also has closed form expressions,

product_(n=3)^(infty)(1-4/(n^2)) = 1/6
(36)
product_(n=3)^(infty)(1-8/(n^3)) = (sinh(pisqrt(3)))/(42pisqrt(3))
(37)
product_(n=3)^(infty)(1-(16)/(n^4)) = (sinh(2pi))/(120pi)
(38)
product_(n=3)^(infty)(1-(32)/(n^5)) = |Gamma[exp(1/5pii)]Gamma[2exp(7/5pii)]|^(-2).
(39)

General expressions for infinite products of this type include

product_(n=1)^(infty)[1-(z/n)^(2N)] = (sin(piz))/(piz^(2N-1))product_(k=1)^(N-1)|Gamma(ze^(2pii(k-N)/(2N)))|^(-2)
(40)
product_(n=1)^(infty)[1+(z/n)^(2N)] = 1/(z^(2N))product_(k=1)^(N)|Gamma(ze^(pii[2(k-N)-1]/(2N)))|^(-2)
(41)
product_(n=1)^(infty)[1-(z/n)^(2N+1)] = 1/(Gamma(1-z)z^(2N))product_(k=1)^(N)|Gamma(ze^(pii[2(k-N)-1]/(2N+1)))|^(-2)
(42)
product_(n=1)^(infty)[1+(z/n)^(2N+1)] = 1/(Gamma(1+z)z^(2N))product_(k=1)^(N)|Gamma(ze^(2pii(k-N-1)/(2N+1)))|^(-2),
(43)

where Gamma(z) is the gamma function and |z| denotes the complex modulus (Kahovec). (40) and (41) can also be rewritten as

product_(n=1)^(infty)[1-(z/n)^(2N)] = (sin(piz))/(pi^3z^2)[(sinh(piz))/(piz)]^(mod(N+1,2))×product_(k=1)^([N/2]-1)cosh^2[pizsin((kpi)/N)]-cos^2[pizcos((kpi)/N)]
(44)
product_(n=1)^(infty)[1+(z/n)^(2N)] = 1/(pi^2z^2)[(sinh(piz))/(piz)]^(mod(N,2))×product_(k=1)^(|_N/2_|)cosh^2[pizsin(((2k-1)pi)/(2N))]-cos^2[pizcos(((2k-1)pi)/(2N))],
(45)

where |_x_| is the floor function, [x] is the ceiling function, and mod(a,m) is the modulus of a (mod m) (Kahovec).

Infinite products of the form

product_(k=1)^(infty)(1-1/(n^k)) = (n^(-1))_infty
(46)
= n^(1/24)[1/2theta_1^'(0,n^(-1/2))]^(1/3)
(47)

converge for n>1, where (q)_infty is a q-Pochhammer symbol and theta_n(z,q) is a Jacobi elliptic function. Here, the n=2 case is exactly the constant Q encountered in the analysis of digital tree searching.

Other products include

product_(k=1)^(infty)(1+2/k)^((-1)^(k+1)k) = pi/(2e)    
(48)
= 0.57786367...    
(49)
product_(k=0)^(infty)(1+e^(-(2k+1)pi)) = 2^(1/4)e^(-pi/24)    
(50)
product_(k=3)^(infty)(1-(pi^2)/(2k^2))sec(pi/k) = 0.86885742...
(51)

(Sloane's A086056 and A118254; Prudnikov et al. 1986, p. 757).

The following analogous classes of products can also be done analytically (J. Zúñiga, pers. comm., Nov. 9, 2004), where again theta_n(z,q) is a Jacobi elliptic function,

product_(k=1)^(infty)(1+1/(n^k)) = n^(1/24)theta_4^(-1/2)(0,n^(-1))[1/2theta_1^'(0,n^(-1))]^(1/6)
(52)
product_(k=1)^(infty)((1-n^(-k))/(1+n^(-k))) = product_(k=1)^(infty)tanh(1/2klnn)
(53)
= theta_4(0,n^(-1))
(54)
product_(k=1)^(infty)((1-n^(-2k))/(1+n^(-2k)))^2 = product_(k=1)^(infty)tanh^2(klnn)
(55)
= (theta_1^'(0,n^(-1)))/(theta_2(0,n^(-1)))
(56)
product_(k=1)^(infty)((1-n^(-2k+1))/(1+n^(-2k+1)))^2 = product_(k=1)^(infty)tanh^2[(k-1/2)lnn]
(57)
= (theta_4(0,n^(-1)))/(theta_3(0,n^(-1)))
(58)
product_(k=1)^(infty)(1-1/(n^(2k-1))) = n^(-1/24)theta_4^(1/2)(0,n^(-1))[2/(theta_1^'(0,n^(-1)))]^(1/6)
(59)
product_(k=1)^(infty)(1+1/(n^(2k-1))) = n^(-1/24)theta_3^(1/2)(0,n^(-1))[2/(theta_1^'(0,n^(-1)))]^(1/6)
(60)
product_(k=1)^(infty)[1+(-1)^(k-1)b/(k+a)] = 2^b_2F_1(a+b,b;a+1;-1)
(61)
= (sqrt(pi)Gamma(a+1))/(2^aGamma(1/2(2+b-a))Gamma(1/2(1+b+a))).
(62)

The first of these can be used to express the Fibonacci factorial constant in closed form.

A class of infinite products derived from the Barnes G-function is given by

 product_(n=1)^infty(1+z/n)^ne^(-z+z^2/(2n))=(G(z+1))/((2pi)^(z/2))e^([z(z+1)+gammaz^2]/2),
(63)

where gamma is the Euler-Mascheroni constant. For z=1, 2, 3, and 4, the explicit products are given by

product_(n=1)^(infty)(1+1/n)^ne^(1/(2n)-1) = (e^(1+gamma/2))/(sqrt(2pi))
(64)
product_(n=1)^(infty)(1+2/n)^ne^(4/(2n)-2) = (e^(3+2gamma))/(2pi)
(65)
product_(n=1)^(infty)(1+3/n)^ne^(9/(2n)-3) = (e^(6+9gamma/2))/(sqrt(2)pi^(3/2))
(66)
product_(n=1)^(infty)(1+4/n)^ne^(16/(2n)-4) = (3e^(10+8gamma))/(pi^2).
(67)

The interesting identities

 xproduct_(n=1)^infty((1-x^(2n))^8)/((1-x^(2n-1))^8)=sum_(n=1)^infty2^(3b(n))sigma_3(Od(n))x^n
(68)

(Ewell 1995, 2000), where b(n) is the exponent of the exact power of 2 dividing n, Od(n)=n/2^(b(n)) is the odd part of n, sigma_k(n) is the divisor function of n, and

product_(n=1)^(infty)(1+x^(2n-1))^8 = product_(n=1)^(infty)(1-x^(2n-1))^8+16xproduct_(n=1)^(infty)(1+x^(2n))^8
(69)
= 1+8x+28x^2+64x^3+134x^4+288x^5+...
(70)

(Sloane's A101127; Jacobi 1829; Ford et al. 1994; Ewell 1998, 2000), the latter of which is known as "aequatio identica satis abstrusa" in the string theory physics literature, arise is connection with the tau function.

An unexpected infinite product involving tanx is given by

 |product_(k=0)^infty[tan(2^kx)]^(1/(2^k))|=4sin^2x
(71)

(Dobinski 1876, Agnew and Walker 1947).

A curious identity first noted by Gosper is given by

product_(n=1)^(infty)1/e(1/(3n)+1)^(3n+1/2) = sqrt((Gamma(1/3))/(2pi))(3^(13/24)exp[1+(2pi^2-3psi_1(1/3))/(12pisqrt(3))])/(A^4)
(72)
= 1.012378552722912...
(73)

(Sloane's A100072), where Gamma(z) is the gamma function, psi_1(z) is the trigamma function, and A is the Glaisher-Kinkelin constant.


Bugün 14 ziyaretçi (17 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol